THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH4230 2024-25 Lecture 9 February 11, 2025 (Tuesday)

1 Recall

We say K is a convex set if $\forall x, y \in K$, then

$$\lambda x + (1 - \lambda)y \in K, \quad \forall \lambda \in (0, 1)$$

Proposition 1. Let K be a closed convex subset of \mathbb{R}^n , and $y \in \mathbb{R}^n$ be fixed, there exists a **unique** $x^* \in K$ such that

$$||x^* - y|| = \min_{x \in K} ||x - y||$$

We define $\operatorname{Proj}_{K}(y) := x^{*}$.

2 Separation Theorem

Theorem 2. Let $X \subseteq \mathbb{R}^n$ be a non-empty closed convex set and $y \notin X$, there exist $w = x^* - y \neq 0$, where $x^* = \operatorname{Proj}_X(y)$ such that

$$\inf_{x \in X} w^T x = w^T x^* > w^T y.$$

To replace w by -w, we also have

$$\sup_{x \in X} w^T x < w^T y.$$

Corollary 3. Let X_1, X_2 be two closed convex sets such that $X_1 \cap X_2 = \emptyset$ and X_2 is bounded, then there exists $0 \neq w \in \mathbb{R}^n$ such that

$$\sup_{x_1 \in X_1} w^T x_1 < \inf_{x_2 \in X_2} w^T x_2.$$

Sketch of Proof. Note that $X_1 - X_2$ is closed (to use X_2 is bounded to conclude) and convex, and $0 \notin X_1 - X_2$.

Then, we have

$$\sup_{x \in X_1 - X_2} w^T x < w^T 0 = 0 \iff \sup_{\substack{x_1 \in X_1 \\ x_2 \in X_2}} w^T (x_1 - x_2) < 0$$
$$\iff \sup_{x_1 \in X_1} w^T x_1 + \sup_{x_2 \in X_2} w^T (-x_2) < 0$$
$$\iff \sup_{x_1 \in X_1} w^T x_1 < \inf_{x_2 \in X_2} w^T x_2$$

If X_2 is not bounded, then the inequality may not be strict. See the following counterexample. Consider

$$X_{1} := \left\{ (x, y) : x \ge 1, \ y \ge \frac{1}{x} \right\}$$
$$X_{2} := \left\{ (x, y) : x \ge 1, \ y \le -\frac{1}{x} \right\}$$

Prepared by Max Shung

In this case, we consider
$$w = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
 and then
$$\sup_{x \in X_1} \langle w, x \rangle = +\infty > -\infty = \inf_{x \in X_2} \langle w, x \rangle$$

and

$$\inf_{x_1 \in X_1} \langle w, x_1 \rangle = 0 = \sup_{x_2 \in X_2} \langle w, x_2 \rangle$$

Linear Form

Definition 1. We say a linear form $\langle w, x \rangle$ properly separate nonempty sets S and T if and only if

$$\sup_{x \in S} \left\langle w, x \right\rangle \leq \inf_{y \in T} \left\langle w, y \right\rangle \quad \text{and} \quad \inf_{x \in S} \left\langle w, x \right\rangle < \sup_{y \in T} \left\langle w, y \right\rangle$$

Definition 2. Let $X \subseteq \mathbb{R}^n$. Lin(X) be the affine subspace generated by X. The relative interior of X (ri(X)) is the interior of X if it is considered as a subspace of Lin(X).

Theorem 4. Let X_1, X_2 be two nonempty convex sets (not necessarily closed) such that

$$\operatorname{ri}(X_1) \cap \operatorname{ri}(X_2) = \emptyset.$$

Then X_1 and X_2 can be properly separated.

Lemma 5. Let $S \subseteq \mathbb{R}^n$ be a subset. Then

$$S$$
 is separable \iff there exists countable dense subset of S
 \iff there exist $K \subseteq S$ such that K is countable and
 $\forall x \in S$, there exists $(x_n) \subseteq K, x_n \to x$

Proof. Let $(r_i)_{i=1,2,...}$ be the set of all rational vectors so that $(r_i)_{i=1,2...}$ is a countable dense subset of \mathbb{R}^n . Then, for each $n \ge 1$, we define a set K_n as follows:

For each r_i , we look for a point $x \in S$ such that $||x - r_i|| \le 1/n$.

If such $x \in S$ exist, we take one and add it in K_n so that K_n is countable.

Let $K = \bigcup_{n \ge 1} K_n \subseteq S$ and K is countable. Let $x \in S$ be an arbitrary point, there exists a sequence

 $r_n \to x$ where each r_n is a rational vector, then for any n, there exists $m \ge n$ such that one has $x_{m_n} \in K_{m_n} \subseteq K$ and $||x_{m_n} - r_{m_n}|| \le 1/m_n$.

This leads to $x_{m_n} \to x$ as $n \to +\infty$. so that K is a dense subset of S.